
Application Buffer-Cache
Management for Performance:

Running the World’s Largest MRTG
David Plonka, Archit Gupta, and Dale Carder – University of Wisconsin-Madison

ABSTRACT

An operating system’s readahead and buffer-cache behaviors can significantly impact
application performance; most often these better performance, but occasionally they worsen it. To
avoid unintended I/O latencies, many database systems sidestep these OS features by minimizing
or eliminating application file I/O. However, network traffic measurement applications are
commonly built instead atop a high-performance file-based database: the Round Robin Database
(RRD) Tool. While RRD is successful, experience has led the network operations community to
believe that its scalability is limited to tens of thousands of, or perhaps one hundred thousand,
RRD files on a single system, keeping it from being used to measure the largest managed networks
today. We identify the bottleneck responsible for that experience and present two approaches to
overcome it.

In this paper, we provide a method and tools to expose the readahead and buffer-cache
behaviors that are otherwise hidden from the user. We apply our method to a very large network
traffic measurement system that experiences scalability problems and determine the performance
bottleneck to be unnecessary disk reads, and page faults, due to the default readahead behavior. We
develop both a simulation and an analytical model of the performance-limiting page fault rate for
RRD file updates. We develop and evaluate two approaches that alleviate this problem: application
advice to disable readahead and application-level caching. We demonstrate their effectiveness by
configuring and operating the world’s largest1 Multi-Router Traffic Grapher (MRTG), with
approximately 320,000 RRD files, and over half a million data points measured every five
minutes. Conservatively, our techniques approximately triple the capacity of very large MRTG and
other RRD-based measurement systems.

Introduction

Sometimes common case optimizations by the
operating system can adversely affect an application’s
performance instead of improving it. For instance, in
most OS, readahead intends to optimize sequential file
access by reading file content into buffer-cache with
the expectation that it will soon be referenced. In this
paper, we identify and remedy a situation in which the
performance of a popular time series database, the
Round Robin Database (RRD) Tool, is adversely
affected by the default OS readahead and caching
behaviors.

We present an investigative method to discover
the RRD system’s performance bottleneck and an
analysis of the bottleneck identified: the OS default
file readahead and caching behavior. We describe two
approaches to optimize system resource usage for
maximum performance: (i) application advice to the
OS to disable readahead and (ii) application-level
caching. We validate our results by configuring and
operating a Multi-Router Traffic Grapher (MRTG) sys-
tem that performs over a half a million measurements

1Based on the authors’ experience in the MRTG and RRD-
Tool user community

every five minutes and records them into a set of
320,000 RRD files in near real-time. We identify the
additional factors that limit further scalability of the
RRD system after these improvements. We also discuss
OS improvements to the readahead behavior that could
generally avoid the application performance problem
we observed.

We investigate the scalability issues in a real
world scenario. During the deployment of new net-
work equipment (routers and switches) over the past
few years at our university, the number of manged
devices grew significantly, nearly doubling each year.
This required our network measurement system’s
capacity to scale similarly. Today, for approximately
60,000 measured network interfaces, about 160,000
RRD files need to be updated every five minutes.
These record interface byte, packet, and error rates. As
the number of measurement points grew with the net-
work size, we found that an increasing number of
measurements did not get recorded into the database
within the required five minute interval (20 to 80 per-
cent failures).

We are motivated to study the scalability issues
of RRD for two main reasons: (i) we were confounded

21st Large Installation System Administration Conference (LISA ’07) 63

Application Buffer-Cache Management for Performance . . . Plonka, Gupta, & Carder

by our system’s poor performance given that it is gen-
erously-sized with respect to processor, memory, and
disk, and (ii) any performance gains achieved would
benefit many, given the popularity of RRDTool. To the
first point, our prior understanding of RRD file struc-
ture and access patterns led us to believe the amount
of work should not overwhelm our system. RRD files
are organized in such a way that a small number of
blocks are accessed per update cycle. The set of
blocks in a series of updates has a low entropy: that is,
most updates touch the same set of blocks. Thus, we
were of the opinion that the ‘‘working set’’ of blocks
for the RRD files in our system could reside com-
pletely in the OS file buffer-cache. Unexpectedly, our
system’s CPU spent the majority of its time in an ‘‘I/O
wait’’ state due to disk reads.

To study the state of the buffer-cache, we wrote a
tool called fincore that exposes the cache ‘‘footprint’’
of a given set of files; it takes a snapshot of the set of
file blocks or pages in the buffer cache. This helps us
determine at any given time what pages were brought
in memory by the OS and helps us discover the reada-
head effects. We are also able to study the average
number of pages per file brought into the memory by
an unmodified MRTG. This helps us determine the
maximum number of RRD files the system could han-
dle with fixed hardware resources. We wrote another
tool called fadvise that can advise the operating system
about the file access pattern using the posix_fadvise
system call. This tool enables the user to forcibly evict
any file’s pages from the buffer-cache, providing a key
function in controlled experiments.

Our work makes the following contributions:
• We provide two tools and a methodology to

study buffering behavior. These enable a sys-
tem administrator or analyst to study the buffer-
cache of any system (provided it implements the
requisite APIs) and draw conclusions about
readahead behavior, cache eviction policies,
and system capacity.

• We develop an analytical model and simulation
that determine the number of RRD files that
can be managed given fixed memory resources
or to determine the memory required for man-
aging a given number of RRD files.

• We present two optimizations to RRDTool and
evaluate their performance and scalability. The
first employs application-level buffering or cach-
ing to coalesce file updates. The second offers
application advice to the operating system that
RRD files are accessed randomly rather than
sequentially, thus causing readahead to be dis-
abled.
The remainder of this paper is organized thusly:

We first provide background on MRTG and RRD, and
introduce our network measurement system. Next, our
investigation technique is described in the ‘‘Method
and Tools’’ section. Then two complementary perfor-
mance optimizations to RRDTool are presented in

the and ‘‘Application-Offered Advice’’ sections. The
subsequent ‘‘Analysis’’ section contains our analytical
model and simulation details. Ultimately, in the ‘‘Scal-
ability’’ section, we report the scalability of the opti-
mization techniques by running what we suggest is the
world’s largest MRTG on a single server. Therein we
also discuss the factors limiting the further scalability
of RRDTool after these improvements. The ‘‘Related
Work’’ and ‘‘Discussion and Future Work’’ sections
follow and we close with our conclusions.

Overview of MRTG and RRD

The Multi-Router Traffic Grapher (MRTG) is a
perl script that collects network measurements and
stores them in RRD files. Figure 1 shows a simplified
MRTG in pseudo-code form. MRTG performance is
satisfactory as long as it can consistently complete one
loop iteration, consisting of one ‘‘poll targets’’ and one
‘‘write targets’’ phase, in less than the update interval,
typically five minutes (300 seconds.)

read configuration file
to learn targets
readConfiguration();
do {

POLL TARGETS:
collect values via SNMP:
readTargets();
WRITE TARGETS:
update values in RRD files:
foreach my $target (@targets) {

RRDs::update(...);
}
sleep (...); # sleep balance

of 300 seconds
} while (1); # forever

Figure 1: The MRTG daemon in pseudo-code.

MRTG refers to the configurable metrics it col-
lects as Targets. Each target consists of two objects
collected via SNMP, typically one inbound and one
outbound measurement for a given network interface,
i.e., a router or switch port. Thus, the number of tar-
gets per network device is typically a function of its
number of interfaces.

The paired objects are each referred to as a Data
Source (DS) in a Round Robin Database (RRD). The
RRD file name itself and the file’s Data Sources
define the database ‘‘columns.’’ Round Robin Archives
(RRAs), or tables of values observed at points in time,
are the database ‘‘rows.’’ Figure 2 shows a typical
RRD file managed by MRTG.

RRD performance is influenced by the RRAs
defined within a file. Each RRA has an associated con-
solidation function, such as AVERAGE or MAX, that
operates on a set of one or more Primary Data Points
(PDPs), i.e., data points collected at the measurement
interval. Additional RRAs typically require additional

64 21st Large Installation System Administration Conference (LISA ’07)

Plonka, Gupta, & Carder Application Buffer-Cache Management for Performance . . .

work to be done periodically, such as on every half
hour, two hours and one day. These aggregation times
are defined as offsets from zero hours UTC. Thus all
like-configured MRTG RRD files require aggregations
to be done every half hour, more every two hours, and
then the most aggregations at midnight.

se
ek

se
ek

write

write

write
read

se
ek

1day AVERAGEs

2 hour AVERAGEs

30 minute AVERAGEs

2 hour MAXs

30 minute MAXs

1 day MAXs

DS1

RRA 0

RRA 4

5 minute AVERAGEs

5 minute MAXs

Actual File Update Areas

DS0

RRD Header / Meta−Data

Figure 2: A typical MRTG RRD file and update oper-
ation. This RRD file stores two Data Sources
(DSes) in eight Round Robin Archives (RRAs):
four AVERAGE and four MAX RRAs. The 5
minute AVERAGE and 5 minute MAX RRAs are
being updated.

Our MRTG System

Our MRTG system use RRDTool and currently
measures approximately 3,000 network devices. Pri-
marily, the devices are switches and routers in our
campus network including those in the core and distri-
bution layers and most of the network equipment at
the access layer, serving users in approximately 200
campus buildings.

In this work, we refer to this production MRTG
network measurement system as the System Under
Test (SUT.) The SUT’s characteristics including its

software are summarized in Table 1.2 The system’s
page size is 4KB and our file-systems are configured
with a 4KB block size. Thus, we will conveniently use
the terms ‘‘block’’ and ‘‘page’’ interchangeably when
referring to segments of a file whether they are on disk
or in memory.

Component Characteristics
Processors 8 × Intel Xeon @ 2.7 GHz

Processor Cache 2 MB
Memory 16 GB

Disk SAN: RAID-10, 16 × 2 disks
Operating System Linux 2.6.9

File System ext3 and ext2, 4KB blocksize
I/O Scheduler Deadline

Software Version
MRTG mrtg-2.10.5

RRDTool rrdtool-1.0.49

Table 1: Characteristics of the System Under Test and
its software.

As our centrally-manged network has grown, our
MRTG system has grown in terms of computing power
and storage. One significant technique we employ to
improve MRTG’s scalability is to divide the targets
amongst a configurable number of MRTG daemons
that we increase as our number of targets increases; we
process about 10,000 targets per daemon. So, our one
MRTG ‘‘instance’’ is actually a collection of MRTG
daemons running on one server. Another dimension in
which our MRTG system is larger than most is that we
resize RRA 0 (the five minute averages) to store up to
one year or five years of data. This increases an MRTG
RRD file’s size from the typical 103 KB to 1.7 MB or
8.2 MB, respectively, of course requiring much more
disk space. (We see that this does not adversely affect
performance in the ‘‘Analysis’’ section.)

Prior to this work, our network growth exceeded
the scalability of the SUT. The Appendix lists system
and MRTG configuration recommendations that we’ve
tested and used in our system to meet our performance
goals.

Method and Tools
Examining System Activity

We started by examining the SUT’s activity to
determine the nature and extent of the performance
problem. We present three measurements that led us to
the root cause of the problem and that allow us to
evaluate potential solutions.

First, we measured the time to completion of
each measurement interval by each MRTG daemon on

2MRTG 2.10.5 patched as follows: Modified fork code to
use select as in mrtg-2.10.6. Added a --debug=time option to
report poll targets and write targets times. Removed test for
legacy ‘‘.log’’ files (log2rrd), and threshcheck.

21st Large Installation System Administration Conference (LISA ’07) 65

Application Buffer-Cache Management for Performance . . . Plonka, Gupta, & Carder

our system, with approximately 160,000 targets in
total. As shown in Figure 1, this consists of two
phases, first polling the network statistics via SNMP
and then updating the pertinent RRD files. Figure 3 is
a scatter plot with the measurement’s time of day on

20
:0

0:
00

21
:0

0:
00

22
:0

0:
00

23
:0

0:
00

00
:0

0:
00

01
:0

0:
00

02
:0

0:
00

03
:0

0:
00

04
:0

0:
00

05
:0

0:
00

06
:0

0:
00

07
:0

0:
00

08
:0

0:
00

09
:0

0:
00

10
:0

0:
00

11
:0

0:
00

12
:0

0:
00

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

Time of Day (UTC)

0

60

120

180

240

300

360

420

480

540

600

660

720

Se
co

nd
s

E
la

ps
ed

total time (poll + write)
poll time

Figure 3: Original MRTG performance on the SUT
with 160,000 targets processed by 28 MRTG dae-
mons. The total time for poll and write targets
phases often exceeds the five minute performance
goal.

20
:0

0:
00

21
:0

0:
00

22
:0

0:
00

23
:0

0:
00

00
:0

0:
00

01
:0

0:
00

02
:0

0:
00

03
:0

0:
00

04
:0

0:
00

05
:0

0:
00

06
:0

0:
00

07
:0

0:
00

08
:0

0:
00

09
:0

0:
00

10
:0

0:
00

11
:0

0:
00

12
:0

0:
00

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

Time of Day (UTC)

0

10

20

30

40

50

60

70

80

90

100

C
PU

 U
til

iz
at

io
n

iowait
system
user

Figure 4: Original CPU utilization on the SUT with
160,000 targets processed by 28 MRTG daemons.
CPU I/O wait state is excessive due to page faults
for RRD file content.

the horizontal axis and the seconds elapsed on the ver-
tical axis. The ‘‘poll time’’ dots show the time taken
(in seconds) to poll the network and the ‘‘total time’’
dots signify the time taken by the poll and the subse-
quent write phase in one loop iteration by an MRTG
daemon. Note that all the network polling finishes
well below 60 seconds (marked by a horizontal line.)
The writing phases very often do not finish within the
period of 300 seconds (our five minute performance
goal, also marked with a horizontal line) for the dae-
mons; some even take 10 minutes to complete. This is

clearly unacceptable performance because it delays
the measurements for the subsequent poll phase in the
single-threaded MRTG daemon, resulting in missing
measurements.

20
:0

0:
00

21
:0

0:
00

22
:0

0:
00

23
:0

0:
00

00
:0

0:
00

01
:0

0:
00

02
:0

0:
00

03
:0

0:
00

04
:0

0:
00

05
:0

0:
00

06
:0

0:
00

07
:0

0:
00

08
:0

0:
00

09
:0

0:
00

10
:0

0:
00

11
:0

0:
00

12
:0

0:
00

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

Time of Day (UTC)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

op
s

pe
r

se
co

nd

reads
writes

Figure 5: Original Disk utilization on the SUT with
160,000 targets processed by 28 MRTG daemons.
Block read operations unexpectedly exceed write
operations on RRD file updates.

Further examination reveals that the CPU was in
I/O wait state for a majority of the time. Figure 4
shows the CPU utilization. The user and system CPU
utilization levels are ∼20% and ∼10%, respectively,
and are not the bottleneck. However, the CPU is
spending more than half its time in the I/O wait state.
Thus, the CPU wastes most of the time waiting for I/O
to complete.

To understand the I/O wait, we studied the actual
number of reads and writes involving the disk. Unex-
pectedly, the system was doing close to 90,000 reads
per second (see Figure 5.) In contrast, the number of
writes was stable at ∼12,000 writes per second. The
high number of reads suggests that files are not being
cached effectively. This led us to examine the contents
of the buffer-cache to determine why.

Examining Buffer-Cache Content

The system’s buffer-cache content gives a good
indication of which files’ accesses are benefiting from
caching in core memory. Unfortunately, a system’s
buffer-cache content is generally hidden from users
and user processes. Prior work has resorted to timing
file block accesses to surmise whether or not a given
page already resides in the buffer-cache memory [4].
While suitable in some situations, this technique is
indirect and has the unwanted side-effect of modifying
the cache because it references the pages about which
it inquires, causing them to be brought into cache and
likely evicting other pages. Thus, a user tool to pas-
sively investigate buffer-cache content is desired.

We introduce a new user command called fincore
that is used to determine which segments of a file are
in core memory, presumably because they reside in the

66 21st Large Installation System Administration Conference (LISA ’07)

Plonka, Gupta, & Carder Application Buffer-Cache Management for Performance . . .

buffer-cache. The fincore command takes file names as
arguments and displays information about file blocks
or pages in memory. The fincore command uses two
common system calls to accomplish this: mmap and
mincore. That is, it first maps a file into its process’
address space, then asks which pages of that segment
of the process’ address space are in core at that time.3

Using fincore we were able to uncover the readahead
effects on the buffer-cache. As an optimization, Linux
reads pages ahead from the disk into the buffer, antici-
pating locality of subsequent reads. This improves per-
formance for most applications by decreasing subse-
quent read latencies. With the current implementation
of RRDTool, the readahead can have a highly adverse
impact on performance and scalability. A brief discus-
sion of the readahead algorithm within the context of
the RRD file shown in Figure 2 can make this clearer.

The readahead algorithm tries to guess whether
the file being accessed is going to be read sequentially
(when readahead is actually useful) or randomly. On
an RRD file update, the first read is for the meta-data
at file offset zero, i.e., the beginning of the file. The
maximum readahead window size is 32 blocks for
ext2 and ext3, and, on an initial read, the readahead
window starts at half that maximum in anticipation of
sequential access. So, 16 pages are read into buffer-
cache when the application read just one. The file off-
set of the second block needed to update the AVER-
AGE RRA depends on the current update position
within the RRA.

For the typical MRTG RRD file, this will lie
within the first 16 pages. The file offset of the third
block needed for the MAX RRA update sometimes
lies beyond the first 16 pages which can lead to further
8 pages being read in to the memory. (Eight pages are
read as the readahead algorithm reduces the readahead
window at the random seek into the MAX RRA.)
These file block accesses are depicted in Figure 6.

A typical RRD file update consists of two RRA
updates (AVERAGE and MAX). With the default
readahead, most blocks that are read in are unneces-
sary. In the event of data kept over a longer period of
time, as in our case with five minute averages for one
year or five years, the write for the AVERAGE RRA
often lays well beyond the first 16 pages. The reada-
head window is reduced to 8 pages for the next ran-
dom read for the AVERAGE RRA update and then to
4 for the subsequent random read for the MAX RRA
update. The readahead algorithm starts to adapt to the
random reads by reducing the readahead window. A
typical RRD file update requires just three block
updates, yet we end up bringing 28 (16+8+4) blocks
into the file cache. The file is then is closed which
causes the adapted readahead value to be lost, revert-
ing to 16 the next time the file is opened. For the

3fincore is not entirely passive; it likely affects the cache
slightly because it opens the file and thus causes an access to
its inode block.

typical RRD file with 800 recorded values, we end up
bringing almost the full file into cache. If we could
bring just the required ‘‘hot’’ blocks into the file cache
by suppressing readahead from the beginning, we
would get better performance and scalability.

se
ek

write

write

write

read

se
ek

se
ek

� �

� �

� �

� �

� �

� �

"Hot" BlocksUnnecessarily Read Blocks

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� �

� �

� �

� �

Figure 6: A sample RRD file update operation and the
blocks involved. Readahead causes many blocks
to be read unnecessarily, rather than just the
‘‘ h o t ’’ blocks.

We see that the number of blocks most often
required per MRTG RRD file per update is three.
Based on our fincore observations (in the ‘‘Analysis’’
section), we note that there is also a low ‘‘churn’’ rate
of these blocks. That is, once fetched into memory,
these blocks were useful for a long period of time. If
we were caching only the required blocks, there would
be no waiting on reads, eliminating our performance
problem.

Due to the default readahead behavior, we must
wait for reads from the disk since we find almost noth-
ing useful in cache. This is because, for instance for
the file cache to accommodate 300,000 RRD files,
300,000 × 24 × 4 KB (close to 30 GB of memory for
the cache) are required. Since the file cache isn’t that
large, the page replacement policy evicts the pages
that will be needed later. However, with suppressed
readahead, we would cache just three blocks per file:
300,000 × 3 × 4 KB (3.6 GB) and an order of magni-
tude less memory is required to fit everything desired
in file cache. Actual buffer-cache behavior for RRD
files is not quite as simple as this example; see the
‘‘Analysis’’ section for details.

21st Large Installation System Administration Conference (LISA ’07) 67

Application Buffer-Cache Management for Performance . . . Plonka, Gupta, & Carder

Evicting Buffer-Cache Content

For repeatable experiments involving the buffer-
cache, we require fine-grained control over the buffer-
cache content. For instance, one run of an experiment
such as an RRDTool update, brings pages of the RRD
file from the disk into the buffer-cache. If we wish to
see the effects of a subsequent update (reading the
pages again from the disk), we need to evict the pages
that were brought in earlier. Generally, the only meth-
ods available to forcibly evict pages from the buffer-
cache were to either (i) unmount the file-system con-
taining the cached files or (ii) populate the cache with
hotter pages by accessing other content more fre-
quently or more recently, thus invoking the systems
page replacement algorithm to evict the unwanted
pages. To perform controlled experiments we wanted a
more convenient method for a user to forcibly evict
specific files’ blocks from the buffer-cache. To do so,
we introduce a new user command called fadvise that
is used to provide file advisory information to the
operating system. The fadvise command takes file
names as arguments.

MRTG
RRDCache

Library

Ramdisk Disk Array

rrdtool

rrdcache journal fileRRDCache::Update
append

MRTG
RRDCache

Library
rrdcache journal fileappend

MRTG
RRDCache

Library
rrdcache journal fileappend

.
.
.

.
.
.

.
.
.

file_1.rrd

file_2.rrd

file_n.rrd

.
.

.

RRDCache::Update

RRDCache::Update

RRDs::update

Every 5 mintes, append timestamp and

values to journal.

RRDCache Library also rotates journal files hourly.

Once an hour, flush ramdisk

cache to Disk Array.

RRDCachewriter

RRDCache

Library RRDs::graph

gengraph.cgi

R
R

D
C

a
ch

e
::
g
ra

p
h

Client wants real-time data.

RRDCache Library forces a flush of

cached data to disk for that rrd through

RRDs::update. Then RRDCache Library

calls RRDs::Graph to read data back.

gengraph.cgi

Client wants trending data,

doesn’t need last hour.

Client uses rrdtool normally.

R
R

D
s
::
g
ra

p
h

Figure 7: An Overview of RRDCache.

Our typical use of fadvise is to advise the system
that we ‘‘don’t need’’ a file’s blocks and that we’d like
them to be evicted from the buffer-cache.4 In this case,
the file is first synchronized so that its dirty pages are
transferred to the storage device, e.g., the disk, and
then the advice is issued. The fadvise command uses
the fsync then fadvise system calls to accomplish this.

Application-Level Buffering

We’ve described our system and showed that it
does not meet our performance goal. A number of

4The Linux 2.6.9 source code and experimentation show
that fadvise DONTNEED immediately evicts non-dirty pages
from the buffer-cache. Other implementations might not
evict the pages immediately.

RRDTool users have proposed significant modifica-
tions to RRD measurement systems to improve perfor-
mance by modifying I/O behavior [22, 12, 9]. These
proposals generally involve intercepting RRD file up-
dates and recording them to be written later. The up-
dates are thus deferred, then later coalesced and written.
The result is improved performance by the introduction
of an independent thread to perform application writes
and by the better locality characteristics of these peri-
odic, coalesced writes.

Since this essentially implements a buffer-cache
within the application, we call this technique applica-
tion-level buffering.

Technique

We now describe our application-level buffering
implementation called RRDCache, shown in Figure 7.
RRDCache has three main components:

1. The RRDCache Library: a perl module that
handles an application’s calls to RRDTool’s
library. Specifically, it is used in place of RRDs
perl module and provides the same functions,
i.e., update, graph, etc.

2. The RRDCache Journal Buffer: a tmpfs file-
system [24] to which updates are temporarily
stored sequentially. (This is reminiscent of a
journal in a journaling file-system.) We se-
lected a memory-based file-system because it
reserves a portion of memory exclusively for
RRD and completely eliminates disk I/O dur-
ing the RRD update operation.5

3. The RRDCachewriter: a script scheduled hourly
using cron that periodically organizes updates
and applies them to the RRD files on disk. In

5The RRDCache journal buffer need not be a memory-
based file-system; it could be a disk-based file-system and
still yield improved performance due to the better locality
characteristics of appended writes to files.

68 21st Large Installation System Administration Conference (LISA ’07)

Plonka, Gupta, & Carder Application Buffer-Cache Management for Performance . . .

this way, RRDCachewriter performs both asyn-
chronous writes and a sort of I/O scheduling on
behalf of RRDCache and the application using
it. This side-stepping of the operating system’s
default behavior, such as flushing dirty buffers
to disk every five seconds, results in perfor-
mance gains.
Normally an MRTG daemon (or any application

that uses RRD files) accesses RRD files on disk
directly by using the RRDTool API. With RRDCache,
MRTG and other applications instead call functions in
the RRDCache library. RRDCache presents the same
API as the RRDTool. So, when an MRTG daemon
calls the RRDCache:update function, the arguments
are appended to a RRDCache journal file associated
with calling process, i.e., the MRTG daemon.

The RRDCache journal file is located on the
tmpfs file-system, eliminating disk I/O for the update.
Periodically (once every hour), the RRDCachewriter
runs to process any new data that has been written to
the RRDCache journal files. The RRDCachewriter
handles the updates from the journal files by commit-
ting the update to the appropriate RRD files on disk.
In the process, it coalesces all the updates meant for a
particular RRD file. If the requisite file pages are not
already present in the buffer-cache, this has the benefit
of bringing them into memory much less frequently.
The RRDCachewriter can be run more often if the
tmpfs runs out of space between runs. (We have been
using 1 GB of our main memory for the tmpfs file-sys-
tem and that has proven to be sufficient for the
160,000 targets polled at five minute intervals.)
Performance Impact

The performance of the measurement system
using RRDCache is much improved. For our MRTG
system, Figure 8 shows the results. We see that the
MRTG daemons finish in well under 60 seconds
which includes both the polling and writing. Contrast
this with Figure 3, in which most of the updates were
not achieving even the five minute performance goal.

Since the RRD file updates were performed by
RRDcachewriter once an hour, and ordered by RRD
file, there is a limited amount of I/O wait by the CPU
at the start of every hour (Figure 8). This I/O wait is
much less than the original system’s I/O wait shown in
Figure 4. The CPU utilization by the user and system
processes remains the same as before.

Also evident in Figure 8 are spikes in disk read
and write activity once per hour as the updates are
being transfered from the journal buffer to the RRD
files on disk. These disk I/O rates are much lower than
the original system’s rates shown in Figure 5.

One complication of RRDCache’s technique is
that the application-level journal buffer is not readable
by RRD applications other than the RRDCachewriter;
currently it is just a buffer for writing, not a cache for
reading. While updates reside in the RRDCache journal
buffer, they can’t be directly accessed by applications

that may wish to graph recent measurements, for
instance. Thus RRDCache slightly changes near real-
time access semantics for RRD files. To work around
this, RRDCache provides a graph function that imme-
diately flushes pending updates from the journal buff-
er into RRD files upon attempts to read them and then
returns the result of the RRDs::graph function. Appli-
cations then have the option of accessing RRD files
directly through the RRDs interface, thus reading per-
haps only older data suitable for trend analysis. How-
ever, performance would degrade if applications were
to read every RRD file once per update interval (e.g.,
five minutes) to retrieve the most recent measure-
ments, reverting to approximately the poor perfor-
mance originally observed. If ever this becomes a
problem, RRDCache could be improved so that its jour-
nal buffer is a true buffer-cache, consistent amongst
both reading and writing processes.6

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

0

60

120

180

240

300

360

420

480

540

600

660

720

Se
co

nd
s

E
la

ps
ed

total time
poll time

MRTG

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

Time of Day (UTC)

0

10

20

30

40

50

60

70

80

90

100

C
PU

 U
til

iz
at

io
n

iowait
system
user

CPU

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

op
s

pe
r

se
co

nd

reads
writes

Disk I/O

Figure 8: RRDCache: Performance on the SUT with
161,000 targets processed by 27 MRTG daemons.
The five minute performance goal is easily met
although CPU I/O wait and excessive block reads
vs. writes are evident.

Application-Offered Advice

We find sufficient motivation to avoid the operat-
ing system default readahead and buffer-cache behav-
iors because of the latencies observed while updating
RRD files. In the previous section, we’ve shown that
modifications that drastically reduce RRDTool’s file
I/O can achieve better performance by working around
the operating system’s default behavior.

In this section, we instead improve performance
by directly influencing the operating system behavior.
Specifically, we identify a mechanism to cause just the
desired RRD file blocks to be read and cached.

Technique
One technique to suppress readahead is to use

the posix_fadvise system call. This allows applications
6Maintaining the journal buffer as a collection of very

small RRD files would enable it to be read conveniently.

21st Large Installation System Administration Conference (LISA ’07) 69

Application Buffer-Cache Management for Performance . . . Plonka, Gupta, & Carder

12
:0

0:
00

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

20
:0

0:
00

21
:0

0:
00

22
:0

0:
00

23
:0

0:
00

00
:0

0:
00

01
:0

0:
00

02
:0

0:
00

03
:0

0:
00

04
:0

0:
00

05
:0

0:
00

06
:0

0:
00

07
:0

0:
00

08
:0

0:
00

09
:0

0:
00

10
:0

0:
00

11
:0

0:
00

Time of Day (UTC)

0

60

120

180

240

300

360

420

480

540

600

660

720

Se
co

nd
s

E
la

ps
ed

total time (poll + write)
poll time

Figure 9: RRD with fadvise: MRTG performance on
the SUT with 162,000 targets processed by 19
MRTG daemons. The five minute performance
goal is clearly met.

12
:0

0:
00

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

20
:0

0:
00

21
:0

0:
00

22
:0

0:
00

23
:0

0:
00

00
:0

0:
00

01
:0

0:
00

02
:0

0:
00

03
:0

0:
00

04
:0

0:
00

05
:0

0:
00

06
:0

0:
00

07
:0

0:
00

08
:0

0:
00

09
:0

0:
00

10
:0

0:
00

11
:0

0:
00

12
:0

0:
00

Time of Day (UTC)

0

10

20

30

40

50

60

70

80

90

100

C
PU

 U
til

iz
at

io
n

iowait
system
user

Figure 10: RRD with fadvise: CPU utilization on the
SUT with 162,000 targets processed by 19 MRTG
daemons. CPU I/O waits are minimal.

to advise the operating system of their future access pat-
terns of files. The application identifies regions of an
open file (by offset and length) and offers hints as to
whether it will access them sequentially (the default) or
randomly. Additionally, the application can inform the
OS whether or not it expects to access those file regions
again in the near future. Thus, for RRD files, we are able
to advise the OS that the file accesses will be ‘‘random.’’
This turns off readahead. The result is that only the
‘‘ h o t ’’ blocks shown in Figure 6 are read and cached. For
Linux 2.6.9 with fadvise RANDOM, on a typical five
minute update only three blocks are cached.

Performance Impact

The benefit of disabling readahead is realized
immediately. Figure 9 shows the time elapsed per loop
iteration of each MRTG daemon. With a system of
162,000 RRD files serviced by 19 MRTG daemons,
we see that they finish within 60 seconds including

12
:0

0:
00

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

20
:0

0:
00

21
:0

0:
00

22
:0

0:
00

23
:0

0:
00

00
:0

0:
00

01
:0

0:
00

02
:0

0:
00

03
:0

0:
00

04
:0

0:
00

05
:0

0:
00

06
:0

0:
00

07
:0

0:
00

08
:0

0:
00

09
:0

0:
00

10
:0

0:
00

11
:0

0:
00

Time of Day (UTC)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

op
s

pe
r

se
co

nd

reads
writes

Figure 11: RRD with fadvise: Disk utilization on the
SUT with 162,000 targets processed by 19 MRTG
daemons. I/O Read operations are reduced to
nearly zero due to efficient use of the buffer-
cache.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Blocks Cached (4KB Pages in Core)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n
of

 R
R

D
 F

ile
s

CDF without fadvise
CDF with fadvise

Figure 12: fincore: Comparison of proportion of RRD
files by number of blocks cached without file
access advice (before) and with advice (after).
Wi t h fadvise RANDOM, unnecessary RRD file blocks
no longer occupy the buffer-cache.

both the polling and writing phases. This is contrasted
with Figure 3 where we see that most of the updates
do not meet our five minute performance goal. This
also suggests that we can monitor even more targets
within a five minute interval. Note that the increase in
the time to update at zero hours UTC is due to aggre-
gation (of the AVERAGE and MAX values) that is
synchronized across all RRD files, and a potential per-
formance limitation that we also discuss. The perfor-
mance potential and limitations are further explored in
the ‘‘Scalability’’ section.

As expected, the CPU is largely freed from wait-
ing on I/O to complete (Figure 10). Again comparing
with Figure 4, we note that the CPU utilization by the
user level processes and the system remains the same
as before. The significant difference is the low amount
of waiting on I/O by the system when the readahead is

70 21st Large Installation System Administration Conference (LISA ’07)

Plonka, Gupta, & Carder Application Buffer-Cache Management for Performance . . .

suppressed. This implies a lowered number of reads
with the buffer-cache becoming much more effective
in caching the needed blocks. This is validated by our
measurement of the reads issued to the disk per second
by the system (Figure 11). The performance gain is
significant, reducing approximately 90,000 reads per
second to about 100 reads per second.

Figure 12 shows the plot of the proportion of
RRD files vs. the number of blocks cached for both
the original system without fadvise and the modified
one with fadvise. One can see the sharp decrease in the
number of blocks cached by the modified system with
fadvise compared to the original system. For the origi-
nal system, a sharp inflection point occurs at 27 pages.
This indicates for a majority of the RRD files 27 pages
were required. Also, the original system required more
pages per file but couldn’t fit them in the buffer-cache.
For the modified system with fadvise, the inflection
point occurs at 8, where the system requires 8 pages
for most of the RRD files. Since the buffer-cache has
space available for more pages, some of the RRD files
get to keep more than 8 pages in the buffer-cache.

Analysis

To better understand the buffer-cache behavior
when updating a very large number of RRD files in
near real-time, we developed both an analytical model
and a simulation. Analytical modeling improves our
understanding of RRDTool’s file update behavior so
we have a solid foundation on which to propose gen-
eral solutions. The resulting model also provides a
convenient way to calculate expected page fault rates
without experimentation and measurement. The simu-
lation allows us to gather a broader set of results than
either the model or real-world experiments that would
prohibitively require repeated reconfiguration of a real
system’s RRD files or physical memory.

Analytical Model

We present an analytical model to predict the
page fault rate given an RRD file configuration and an
estimated number of pages available for the each RRD
file in the system’s buffer-cache memory. The model-
ing is done for a system with RRDTool patched to do
fadvise RANDOM.

For this analytical model, we first need a list of
the unique Primary Data Point (PDP) counts in in-
creasing order, over which the consolidation is per-
formed for every RRA (for AVERAGE, MAX, and so
on). Recall that each RRA consolidates some number
of PDPs that were gathered at the measurement inter-
val, so an RRA’s PDP count determines how often it is
updated. For instance, for the RRD file shown in Fig-
ure 2, the ordered list of values of PDPs over all RRAs
is: {1, 6, 24, 288}. These represent the periods of con-
solidation which in the case of Figure 2 refers to 5
minutes (1), 30 minutes (30/5 = 6), 2 hours (120/5 =
24) and 1 day (288). We also need a corresponding list

of number of RRAs that are configured to consolidate
each of those numbers of PDPs. That is for 2, since
both MAX and AVERAGE RRAs are kept for each of
the PDP value, the associated count list for {1, 6, 24,
288} is {2, 2, 2, 2}.

We denote the ordered PDP list as {x1, x2, . . . ,
xn} and the associated RRA count list as {c1, c2, . . . ,
cn}. The cardinality of the ordered list is n. Hence in
the example, {x1, x2, x3, x4} ≡ {1, 6, 24, 288} and {c1,
c2, c3, c4} ≡ {2, 2, 2, 2}. Here, n = 4.

Now, for one update of an RRA, let B be the
number of bytes written into the RRD file. In our case
B = 16 bytes, for the two 8-byte floating-point values.
For simplicity, we assume that each RRA is block
aligned. This does not sacrifice generality since the
average number of page faults due to crossing page
boundaries is still predicted accurately as long as an
RRA is at least one block in size, which is typically
the case. The block size is S bytes. S = 4096 bytes in
our case.

The number of updates that fit in a block is u =
S/B. That is, after every S/B updates a page fault will
occur. u = 256 in our case.

Let T be the time after which the primary data
point is updated. T = 5 minutes in our case.

Now we estimate, for a single RRD file, the rate
at which page faults occur given maximum p pages
are available in the buffer-cache for use for this file
(excluding the inode and indirect blocks.) When more
than p pages are needed, LRU is used to evict pages to
make place for newer ones.

The time estimated to a page fault, t, is the fol-
lowing:

(1)t = minimum(uT, xsT)
where ∃ s such that

(2)p − 1 ≥
s

i=1
Σ ci

(3)p − 1 <
s+1

i=1
Σ ci

minimum() returns the lower of the two values.
The rationale behind xsT: For each RRA, a page

is needed in memory. So we calculate the count of
RRAs which can be fit in p − 1 pages. (Only p − 1
pages are available to the RRAs because one page is
required for the first block of the RRD file that is
always read as it contains the RRD metadata.) The
subscript s is used to index into the ordered list to
determine the interval after which the fault will occur.
Each index into the ordered list is a discrete point in
time when a fault will occur. For instance, if s = 2,
then x2 implies fault would occur every half hour. (2)
and (3) give the index s based on the count of RRAs
that can fit in p − 1 pages.

The rationale behind uT: A page fault will surely
occur after u updates.

The number of pages that will see a fault, m,
after time t:

21st Large Installation System Administration Conference (LISA ’07) 71

Application Buffer-Cache Management for Performance . . . Plonka, Gupta, & Carder

(4)m = δ
n

i=1
Σ 1

xi
where:

(5)δ = p −
s

i=1
Σ ci

Rationale behind δ: The number of pages that
need to be brought into memory is the count of the
RRAs at a particular index s, which cannot be held by
p pages.

Rationale behind
n

i=1
Σ 1

xi
: In our case, the update

rate for x1 is six times the update rate of x2. Therefore,

the number of faults for x1 =
1

6
x2. We sum for all the

fault rates through xn relative to x1 and hence the
1

xi
factor.

Rate of page fault, r, is given by m/t:

(6)r =
m

t

(7)
r =

δ
n

i=1
Σ 1

xi

minimum(uT, xsT)

This model essentially predicts the average val-
ues shown with no readahead in Figure 13, as verified
by simulation. Thus, the model provides a quick way
to calculate either the expected page fault rate given a
buffer-cache memory constraint, or vice-versa. In ad-
dition to this practical result, the analytical model led
us to the following insights:

• The total RRD file size is practically irrelevant.
This is ideal since it frees us to extend our data
retention arbitrarily, bounded only by disk space.
For instance, recall that in our system we regu-
larly resize our RRD files to store five minute
averages for up to five years. (MRTG typically
stores them for less than three days.) The re-
sulting 17× increase in file size only nominally
affects the page fault rates.

• The total number of RRAs with a given aggre-
gation level is important. For instance, remov-
ing the five minute MAX RRA,7 which dupli-
cates the values in the five minute AVERAGE
RRA, results in a significantly lower page fault
rate when buffer-cache memory is scarce.

Simulation

In addition to deriving the analytical model, we
developed a page fault simulation. This simulation
provides a means by which to validate the average
page fault rate predicted by the analytical model. It

7We suppose that the MRTG five minute MAX RRA ex-
ists for historical and convenience reasons. While it allows
one to graph just the MAX values and see the entire time
range, users typically put both the AVERAGE and MAX
values on the same graph.

also exposes the distribution, variance, and peak page
fault rates by time of day.

First we simulated an entire lifetime of an RRD
file’s updates using RRDTool itself, but with synthetic
input data. Before each update, we used our fadvise
command’s ‘‘don’t need’’ technique to evict the file’s
cached (hot) pages. After each update we used our fin-
core command’s technique to determine the hot pages
and recorded the page numbers to a log.

Secondly, we wrote a buffer-cache simulator with a
Least-Recently-Used (LRU) page replacement policy
and replayed the page operation log recorded earlier to
determine the page faults with varying numbers of
buffer-cache pages being available per RRD file.
While our SUT’s buffer-cache is actually managed
using the Linux 2.6 page replacement algorithm [8],
similar to 2Q [10], we make the simplifying assump-
tion that LRU is suitably similar for the purpose of
simulation. In addition to the RRD file data blocks, we
also simulated access to the file’s inode and indirect
blocks. On ext2 and ext3 file systems, a typical MRTG
RRD file incurs an indirect lookup (and therefore an
indirect block must occupy space in the buffer-cache)
for each data block above the twelfth since only the
first twelve blocks are directly referenced in the inode.

From the resulting simulated behavior, we can
determine the expected page faults for a single RRD file
over time. We then extrapolate by multiplying by the
target number of RRD files to determine what amount
of buffer-cache (as limited by physical memory) re-
duces page fault disk reads to an acceptable level.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Buffer Cache Pages (4KB) Available per MRTG RRD File

0

5

10

15

20

25

30

35

40

45

Pa
ge

 O
pe

ra
tio

ns
 p

er
 U

pd
at

e
In

te
rv

al
 (

30
0

se
co

nd
s)

Average Page-Ins with default readahead
Average Page-Ins with no readahead

Figure 13: Simulation with and without fadvise:
Page-ins as a function of the number of buffer-
cache pages available per MRTG RRD file. Sig-
nificantly reduced paging rates result following
the dramatic drops.

We run the simulation for both the original RRD-
Tool (default readahead). and the one patched with fad-
vise RANDOM (no readahead). Figure 13 shows the
average number of page-in operations for both ver-
sions of RRDTool as a function of the number of
buffer-cache pages available per MRTG RRD file. For

72 21st Large Installation System Administration Conference (LISA ’07)

Plonka, Gupta, & Carder Application Buffer-Cache Management for Performance . . .

the original RRDTool, when the number of pages
available in the buffer-cache is less than 18, the num-
ber of page faults is very high. It falls at 18 because
the 16 pages required for initial readahead are avail-
able in the buffer-cache at this point. (It is 16+2
because two extra blocks are required for the file
inode and indirect blocks.)

Also, sometimes, the AVERAGE and MAX RRAs
get written within these 16 pages. For the patched ver-
sion with fadvise RANDOM, the average number of page-
ins is close to zero if more than 7 pages are available in
the buffer-cache. Page faults still occur when 8 pages are
available in the buffer-cache but the average page-in rate
is extremely low as shown in Figure 14. Note that more
pages are written out at the aggregation intervals of 30
minutes, 2 hours and one day. The time of day 00:00
UTC shows the peak paging activity, when aggregation
happens for daily RRAs.

Our simulation results are validated by the earlier
observations of the real system’s performance with
fadvise RANDOM. Specifically, the read and write pat-
tern of the simulation in Figure 14 agrees with the
observations of the real system with fadvise RANDOM
in Figure 11, i.e., near zero read (page-in fault) rate.
Earlier, using fincore in the real system, we also
observed that most RRD files had only 8 pages in
cache (Figure 12); this is the value that simulation
shows (Figure 13) is the minimum required to achieve
an average page fault rate of nearly zero.

12
:0

0:
00

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

20
:0

0:
00

21
:0

0:
00

22
:0

0:
00

23
:0

0:
00

00
:0

0:
00

01
:0

0:
00

02
:0

0:
00

03
:0

0:
00

04
:0

0:
00

05
:0

0:
00

06
:0

0:
00

07
:0

0:
00

08
:0

0:
00

09
:0

0:
00

10
:0

0:
00

11
:0

0:
00

12
:0

0:
00

Time of Day (UTC)

0

1

2

3

4

5

6

7

8

9

10

4K
B

 P
ag

es

Average Page Writes
Average Page-In Faults

Figure 14: Simulation with fadvise: Average page-
out and page-in operations by time of day given
eight buffer-cache pages available per MRTG
RRD file. As few as eight pages per file reduces
page-ins to near zero.

Scalability

We have shown that using either application-
level buffering or application-offered advice dramati-
cally improves the performance of RRD systems. In
this section we show the performance and capacity
scalability characteristics of a very large RRD and

MRTG-based network measurement system by testing
it first with just application advice, and secondly with
advice plus application-level buffering. Thus, we explore
the performance of the simpler of the two techniques and
also the two techniques combined to determine the
upper-bound to the scalability of such a system.

Our production MRTG system today monitors
approximately 3,000 network devices with approxi-
mately 160,000 MRTG targets. Recall that each target
is typically a pair of measurements such as byte,
packet and error rates, inbound and outbound. Thus,
the production system measures and records approxi-
mately 320,000 data points every five minutes. Having
already found that either improvement technique re-
sults in satisfactory performance and thus does not
push our system to its limit, we now construct an even
larger system to study scalability.

We create an MRTG system three times the size by
replicating our existing production measurement system
so that there are three like-configured MRTG instances
all running on one server. Our experimental procedure is
to begin with approximately 160,000 (i.e., the production
MRTG system) and then progressively add 20,000 tar-
gets every twenty minutes (10,000 from each of the
replicated instances), until all three systems are running
in parallel for a total exceeding 480,000 targets.

MRTG with fadvise RANDOM
We first tested the scalability of MRTG with RRD-

To o l patched to do fadvise RANDOM. The performance
results are shown in Figures 15 and 16. This is the sys-
tem we claim as the world’s largest MRTG, operating
with acceptable performance at around 320,000 RRD
files. While there are some outlier points in the upper
left of Figure 15, they occur at twenty minute intervals
and there are exactly two per interval. Thus, these out-
liers are an artifact of the experimental procedure
showing latency during just the very first loop itera-
tion of each of the two new MRTG daemons as their
the set of hot pages for their RRD files are read into
buffer-cache. Beyond about 320,000 targets in the
scalability test, performance is unacceptable because
page faults increased and CPU utilization continually
exceeded 65%, leaving little room for other tasks.

In Figure 16 note the spikes in CPU I/O wait
state just following 1600 and 1800 hours. These are
due to aggregations that occur every two hours in typi-
cal MRTG RRD files. Furthermore, note that as the
number of targets increases, similar spikes are seen at
half hour intervals following 1800 hours. These spikes
indicate that the number of hot pages exceeds the
capacity of the buffer-cache on the SUT, resulting in
an excessive page fault rate. We estimate our buffer-
cache requirement to be 8 pages per file and 480,000 ×
8 × 4 KB = 14.6 GB. Although the SUT has 16 GB of
memory in total, often only 10 GB is available for
buffer-cache. Ultimately, the high CPU utilization in-
terfered with SNMP polling (as evidenced by a drop in
network traffic) so the test was stopped.

21st Large Installation System Administration Conference (LISA ’07) 73

Application Buffer-Cache Management for Performance . . . Plonka, Gupta, & Carder

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

20
:0

0:
00

Time of Day (UTC)

0

60

120

180

240

300

360

420

480

540

600

660

720

Se
co

nd
s

E
la

ps
ed total time (poll + write)

poll time

16
0

k
18

0
k

20
0

k
22

0
k

24
0

k
26

0
k

28
0

k
30

0
k

32
0

k
34

0
k

36
0

k
38

0
k

40
0

k
42

0
k

44
0

k
46

0
k

48
0

k

Number of Targets (RRD Files)

Figure 15: Scaling with fadvise: MRTG performance
on the SUT progressively increasing to 483,000
targets and 53 MRTG daemons.

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

20
:0

0:
00

Time of Day (UTC)

0

10

20

30

40

50

60

70

80

90

100

C
PU

 U
til

iz
at

io
n

iowait
system
user

16
0

k
18

0
k

20
0

k
22

0
k

24
0

k
26

0
k

28
0

k
30

0
k

32
0

k
34

0
k

36
0

k
38

0
k

40
0

k
42

0
k

44
0

k
46

0
k

48
0

k

Number of Targets (RRD Files)

Figure 16: Scaling with fadvise: CPU utilization on the
SUT while progressively increasing to 483,000 tar-
gets and 53 MRTG daemons.

MRTG with fadvise RANDOM and RRDCache
Subsequently, we tested the scalability of MRTG

using RRDCache combined with RRDTool patched to
fadvise RANDOM. The performance results are shown
in Figures 17 and 18. These combined techniques
yielded the highest capacity, exceeding 400,000, but
CPU utilization reached 100% and the RRDCache-
writer could not complete its hourly updates within an
hour, so an increasing backlog developed from which
it didn’t recover and the test was stopped.

Limitations
These scalability tests on our SUT show at least

two capacity or performance limitations of large RRD
and MRTG systems:

1. When buffer-cache is scarce, page fault
rates peak at RRD aggregation times that are
predictable offsets from zero hours UTC.

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

20
:0

0:
00

Time of Day (UTC)

0

60

120

180

240

300

360

420

480

540

600

660

720

Se
co

nd
s

E
la

ps
ed total time (poll + write)

poll time

16
0

k
18

0
k

20
0

k
22

0
k

24
0

k
26

0
k

28
0

k
30

0
k

32
0

k
34

0
k

36
0

k
38

0
k

40
0

k
42

0
k

44
0

k
46

0
k

48
0

k

Number of Targets (RRD Files)

Figure 17: Scaling RRDCache with fadvise: MRT G
performance on the SUT progressively increas-
ing to 486,000 targets and 52 MRTG daemons.

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

20
:0

0:
00

Time of Day (UTC)

0

10

20

30

40

50

60

70

80

90

100

C
PU

 U
til

iz
at

io
n

iowait
system
user

16
0

k
18

0
k

20
0

k
22

0
k

24
0

k
26

0
k

28
0

k
30

0
k

32
0

k
34

0
k

36
0

k
38

0
k

40
0

k
42

0
k

44
0

k
46

0
k

48
0

k

Number of Targets (RRD Files)

Figure 18: Scaling RRDCache with fadvise: CPU
utilization on the SUT while progressively in-
creasing to 486,000 targets and 52 MRTG dae-
mons.

Synchronized aggregations, and thus consoli-
dated data points with matching timestamps,
are a convenience to RRDTool users when
fetching or graphing the data. However, when
updating RRD files in near real-time, there is
clear performance consequence to synchronized
aggregation because work is not distributed
evenly across time.

2. CPU utilization approached or reached 100%
when updating around 480,000 RRD files. This
consists primarily of user mode CPU that we
attribute to the MRTG and RRDCachewriter
perl scripts. Thus, the next performance bottle-
neck limiting the scalability of MRTG systems
is likely CPU.
We’ve shown that MRTG and RRD systems can

scale to hundreds of thousands of targets or RRD files.

74 21st Large Installation System Administration Conference (LISA ’07)

Plonka, Gupta, & Carder Application Buffer-Cache Management for Performance . . .

Without changing the RRD file read semantics, our
fadvise RANDOM method allows us to scale to 320,000
target and files with acceptable performance on our
system with 16 GB of memory. With slightly changed
read semantics (because of the deferred RRD file
updates), the RRDCache method scales higher. The
factors that limit further scalability are (i) the CPU
required for target processing (in perl) and (ii) RRD-
Tool’s aggregations at synchronized times across all
RRD files. Further gains can be achieved by profiling
and optimizing the system software (e.g., MRTG) and
by appropriately sizing the systems physical memory
so that an even larger buffer-cache is available.

Related Work

Our work is informed by prior operating system
and application performance improvement techniques.

Within the operating system, better buffer-cache
management techniques can help reduce the number
of disk reads and writes. There are a number of poli-
cies described in the literature (e.g., FIFO, LRU, LFU,
Clock, Random, Segmented FIFO, 2Q [10], and LRU-
K). The readahead by the OS can limit the amount of
useful data that can be cached. In some circumstances,
improvements to the adaptive readahead algorithm can
significantly improve performance [14].

The ability to accept hints or advice from appli-
cations with the aim of more efficiently managing
resources and improving performance was imple-
mented in the Pilot operating system [20]. An inter-
face by which operating systems can accept such
advice specifically to provide buffer management has
long-since been suggested [25]. Later work finds that
application ‘‘hints’’ to inform the operating system of
file access patterns improves performance [15]. Today,
some operating systems have support for application
advice via the fadvise and madvise APIs [19].

A related approach is to the change the kernel to
include functionality which enables application guided
buffer-cache control [2]. Another possibility is to sim-
ulate the cache replacement algorithm to build a rea-
sonably accurate model of the contents of the cache
for reordering reads and writes [4].

Wi t h i n our version of the operating system (Linux
2.6), there are four I/O scheduling algorithms avail-
able: Completely Fair Queuing (CFQ) scheduling,
deadline elevator, NOOP scheduler and Anticipatory
elevator scheduling [21]. The scheduling algorithm
can prioritize individual I/O requests, such as reads
over writes, and therefore affects application perfor-
mance when page faults occur.

A number of software systems inspired by the
original MRTG have improved its performance in
some ways. The current MRTG, Cricket [1], Cacti [5],
and Torrus [23] applications use RRDTool [13] to
achieve improved performance. Cricket [1] allows
configuration of more parallel measurements per file,

but this offers only a modest performance improve-
ment since tens to hundreds of thousands of RRD files
would still be required. RTG [3] made significant
changes in the polling (but that is not our bottleneck)
and replaced the file I/O with relational database I/O.
We have no reason to believe this would offer better
I/O performance, and it significantly changes the user
interface to the data. JRobin [11] completely reimple-
ments RRDTool in java, improving performance in
some areas but decreasing it in others and modifying
the RRD file format in the process.

Recently, RRD users have proposed design
changes or made customizations to introduce an
application-level cache maintained by a daemon that
intercepts updates [22, 12, 9].

Discussion and Future Work

Our investigation and experimentation thus far
suggests at least the following potential items of future
work.

• File Types: UNIX-based operating systems lack
file types; a file is simply a stream of bytes and
this is often cited as an advantage or, at least, a
successful simplification. However, this is one
reason that the RRD file update access pattern is
not handled well by the adaptive readahead
algorithm. Perhaps the readahead and other
behaviors, such as caching, could be influenced
or determined at file open time based on a file’s
type, as defined by file name extension (e.g.,
‘‘.rrd’’) or by magic, the file command’s magic
number file.

• File Read Performance: Although we have
disabled readahead to achieve better update
performance, we have not thoroughly investi-
gated its effect on RRD fetch or graphing (read)
performance. We surmise that advising for ran-
dom I/O helps read performance too, but have
not carefully measured it.
Also, we selected the Linux deadline I/O sched-
uler because it prioritizes reads over writes, but
evaluating this decision is left for future work.
Linux’ Completely Fair Queuing (CFQ) sched-
uler may perform acceptably as well; we have
not compared them.

• RRD Update Interval: Some network opera-
tors desire more frequent measurements, such
as a one minute interval rather than five. Future
work might explore if RRD scales similarly in
this situation. We believe our page fault rate
model is valid for all update intervals some-
what greater than that of the system’s page
replacement algorithm. (Note that dirty pages
are flushed at five second intervals by pdflush in
Linux 2.6.)
Our performance results suggest that the CPU
load would be a limiting factor as the update
interval decreases, i.e., if updates are more fre-
quent. Perhaps simply choosing a one minute

21st Large Installation System Administration Conference (LISA ’07) 75

Application Buffer-Cache Management for Performance . . . Plonka, Gupta, & Carder

interval would constrain the capacity to about one
fifth that of when using a five minute interval.
Judicious partitioning of the set of targets
would help, e.g., using a one minute interval for
measuring the core and/or distribution links and
a five minute interval for more numerous ac-
cess ports.

• MRTG CPU Utilization: As is to be expected
in system performance work, we found that
eliminating the I/O bottleneck exposed the next
bottleneck, CPU, that limits scalability. It seems
this high CPU utilization is primarily due to the
MRTG perl script, thus profiling and optimiz-
ing it could improve performance.

• ‘‘Gaming’’ the Readahead Algorithm: While
our platform provides the BSD and POSIX fad-
vise APIs, others do not or do not yet completely
implement them. Can we instead ‘‘game’’ their
readahead algorithms, for instance by perform-
ing otherwise unnecessary no-op seek opera-
tions, to likewise disable readahead? What is the
performance cost of doing so? If adaptive reada-
head algorithms are similar, this might also have
portability benefits. (We’ve observed that some
operating systems use a readahead of zero ini-
tially,8 so they exhibit the desired behavior for
RRD files without needing advice or adapta-
tion.)
Alternatively, the adaptive readahead algorithm
could be improved to respect a file’s access his-
tory, i.e., by initially setting readahead based on a
series of previous file access (open/close) ‘‘ses-
sions’’ by the current process or prior processes.

• RRD File Design: We’ve seen how the RRD
file organization influences its update perfor-
mance. Is there a better organization for RRD
files? For example, locality of data for updates
would improve if RRAs with the same number
of PDPs (but different consolidation functions)
could be interleaved in the same block so that
their corresponding data points are nearby when
updated.
Is there a way to avoid synchronized aggrega-
tions or consolidations across all RRD files?
Perhaps we can introduce a stochastic compo-
nent to skew those updates slightly in time.
This is difficult to do without affecting RRD
file read semantics and without introducing an
independent thread to perform updates.

Conclusions

In conclusion, we’ve provided a general analysis
method and two new tools, fincore (available at [18])
and fadvise (available at [16]), that expose readahead
and buffer-cache behaviors in running systems. With-
out such tools, these performance-critical aspects of

8Apple’s OS X with HFS+ file-system has an initial
readahead of zero.

the operating system are hidden from system adminis-
trators and users.

By both modeling and simulation, we’ve pro-
vided a detailed analysis of the I/O characteristics of
RRD file updates. We’ve shown how the locality of
RRD file accesses can be leveraged, limiting page
faults and disk I/O, resulting in improved performance
and scalability for RRD systems. We’ve found that
RRD buffer-cache utilization and page faults are
defined by subtleties in the RRD file format and RRD-
Tool’s access pattern, rather than simply being defined
by file size. This is advantageous because it means
that larger RRD systems can be operated than would
otherwise be thought.

We ’ v e outlined two effective methods to improve
RRD performance. The first, RRDCache (available at
[6]), is what we’ve called application-level caching or
buffering. The second, for which we provide a patch to
RRDTool (available at [17]), issues application advice
to the operating system to select readahead and buffer-
cache behavior appropriate for random RRD file I/O.
While the two methods are starkly different, both
eliminate the buffer-cache memory bottleneck that has
been observed in large RRD network measurement sys-
tems. Conservatively, either technique triples the capac-
ity of such systems. Together, these complementary
techniques can be applied to maximize performance.

Finally, we’ve shown that system tuning and mi-
nor capacity-enhancing code changes improve Round
Robin Database performance so that RRDTool can be
used for even the largest managed networks.

Acknowledgments

We thank Hideko Mills for her support, Michael
Swift for his valuable input, and Robert Plankers and
Kevin Kettner II for their assistance with system ad-
ministration. Mark Plaksin provided helpful review
feedback.

kSar [7] proved useful for conveniently visualiz-
ing sar data.

This work is a collaboration with the University
of Wisconsin’s Division of Information Technology.

Author Biographies

David Plonka is a graduate student and research
assistant in Computer Sciences at the University of
Wisconsin-Madison. He received a B.S. from Carroll
College in Waukesha, Wisconsin in 1991. He can be
reached at plonka@cs.wisc.edu .

Archit Gupta is a graduate student in Computer
Sciences at the University of Wisconsin-Madison. His
primary interest areas are Systems and Networking.
He can be reached at archit@cs.wisc.edu .

Dale Carder is a senior network engineer for the
University of Wisconsin-Madison and WiscNet. He
can be reached at dwcarder@doit.wisc.edu .

76 21st Large Installation System Administration Conference (LISA ’07)

Plonka, Gupta, & Carder Application Buffer-Cache Management for Performance . . .

Bibliography

[1] Allen, J. R., ‘‘Driving via the Rear-View Mirror:
Managing a Network with Cricket,’’ Conference
on Network Administration, pp. 1-10, 1999.

[2] Arpaci-Dusseau, A. C., R. H. Arpaci-Dusseau, N.
C. Burnett, T. E. Denehy, T. J. Engle, H. S.
Gunawi, J. Nugent, and F. I. Popovici, ‘‘Trans-
forming Policies into Mechanisms with Infoker-
nel,’’ Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP ’03),
Bolton Landing (Lake George), New York, Octo-
ber, 2003.

[3] Beverly, R., ‘‘RTG: A Scalable SNMP Statistics
Architecture for Service Providers,’’ Proceedings
of the 16th Conference on Systems Administration
(LISA 2002), Philadelphia, PA, pp. 167-174, No-
vember 3-8, 2002.

[4] Burnett, N. C., J. Bent, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, ‘‘Exploiting Gray-
Box Knowledge of Buffer-Cache Contents,’’ The
Proceedings of the USENIX Annual Technical
Conference (USENIX ’02), pp. 29-44, Monterey,
CA, June, 2002.

[5] Cacti, http://www.cacti.net .
[6] Carder, D., RRDCache, http://net.doit.wisc.edu/

˜dwcarder/rrdcache/ .
[7] Cherif, X., kSar, http://ksar.atomique.net .
[8] Gorman, M., Understanding the Linux Virtual

Memory Manager, Prentice Hall, 2004.
[9] Hustace, D., Queueing RRD, http://www.open-

nms.org/index.php/Queueing_RRD .
[10] Johnson, T. and D. Shasha, ‘‘2Q: A Low Over-

head High Performance Buffer Management Re-
placement Algorithm,’’ In J. B. Bocca, M. Jarke,
and C. Zaniolo, editors, VLDB’94, Proceedings of
20th International Conference on Very Large
Data Bases, Santiago de Chile, Chile, pp. 439-
450, September 12-15, 1994.

[11] Markovic, S. and A. Vandamme, JRobin, http://
www.jrobin.org .

[12] Oetiker, T., RRD Accelerator Design proposal, http://
oss.oetiker.ch/rrdtool-trac/wiki/RRDaccelerator .

[13] Oetiker, T., ‘‘MRTG: The Multi Router Traffic
Grapher,’’ Proceedings of the 12th Conference on
Systems Administration (LISA-98), Boston, MA,
USA, pp. 141-148, December 6-11, 1998.

[14] Pai, R., B. Pulavarty, and M. Cao, ‘‘Linux 2.6
Performance Improvement Through Readahead
Optimization,’’ Proceedings of the Linux Sympo-
sium, 2004.

[15] Patterson, R. H., G. A. Gibson, E. Ginting, D.
Stodolsky, and J. Zelenka, ‘‘Informed Prefetching
and Caching,’’ SOSP, pp. 79-95, 1995.

[16] Plonka, D., The fadvise command, http://net.doit.
wisc.edu/˜plonka/fadvise/ .

[17] Plonka, D., The fadvise random patch to RRDTool,
http://net.doit.wisc.edu/˜plonka/rrdtool_fadvise/.

[18] Plonka, D., The fincore command, http://net.doit.
wisc.edu/˜plonka/fincore/.

[19] fadvise, http://www.opengroup.org/onlinepubs/
009695399/functions/posix_fadvise.html.

[20] Redell, D. D., Y. K. Dalal, T. R. Horsley, H. C.
Lauer, W. C. Lynch, P. R. McJones, H. G. Mur-
ray, and S. C. Purcell, ‘‘Pilot: An Operating Sys-
tem for a Personal Computer,’’ Communications
of the ACM, Vol. 23, Num. 2, pp. 81-92, 1980.

[21] Shakshober, D. J., Choosing an I/O Scheduler for
Red Hat Enterprise Linux 4 and the 2.6 Kernel,
http://www.redhat.com/magazine/008jun05/
features/schedulers/ .

[22] Simonet, P., Post to rrd-developers mailing list.
[23] Sinyagin, S., Torrus: The Data Series Processing

Framework, http://torrus.org .
[24] Snyder, P., ‘‘tmpfs: A Virtual Memory File Sys-

tem,’’ Proceedings of the Autumn 1990 EUUG
Converence, Nice, France, pp. 241-248, 1990.

[25] Stonebraker, M., ‘‘Operating System Support for
Database Management,’’ Commununications of
the ACM, Vol. 24, Num. 7, pp. 412-418, 1981.

21st Large Installation System Administration Conference (LISA ’07) 77

Application Buffer-Cache Management for Performance . . . Plonka, Gupta, & Carder

Appendix: Performance Recommendations for
RRD and MRTG Systems

• When building a very large RRD measurement
system, dedicate the machine to this purpose.
Since RRD is a file-based database, it relies on
the buffer-cache that is shared across all system
activity. Because of RRD’s unique file access
characteristics and buffering requirements, it is
easier to achieve performance gains by tuning
the system just for RRD.

• Use an RRDTool that has our fadvise RANDOM
patch. On systems that have a fairly aggressive
initial readahead (such as Linux), this will very
likely increase file update performance by reduc-
ing the page fault rate and the buffer-cache
memory required.

• Av o i d file-level backups of RRD files unless the
set of RRD files complete fit into buffer-cache
memory. File-level backups read each modified
file completely and sequentially; this can fill the
buffer-cache and subsequently causes more page
faults on RRD updates. Backups are essentially
indifferentiable from application access, and
thus unnecessarily populate the system’s buffer-
cache with content that won’t be re-used soon.
(Note that backup programs could call fadvise
NOREUSE or fadvise DONTNEED to inform the
operating system that the file content will not
be re-used.)

• Split MRTG targets into a number of groups
and run a separate daemon for each. In our sys-
tem, we reconfigure daily and run a target_split-
ter script to produce a new set of ‘‘.cfg’’ files
each with approximately 10,000 targets per
MRTG daemon. Note that polling performance
is also influenced by the SNMP agent perfor-
mance on the network device polled. So, if the
splitting results in grouping like targets together
based on the model of device monitored, there
could be quite a disparity in time to complete
the MRTG ‘‘poll targets’’ phase.

• Do not create RRD files all at once. By stagger-
ing the start times, updates to like RRAs will
cross block boundaries at different times, dis-
tributing the page faults that occur on block
boundary crossings. As a network is deployed
and grows, these RRD file start times would
naturally be staggered, but this could be quite
different when introducing measurement to an
existing deployed network.

• Run a caching resolver or a nameserver on the
localhost, i.e., the MRTG system itself. This
reduces ‘‘poll targets’’ latency due to host name
resolution; MRTG performs very many DNS
name resolutions when hostnames are used
(rather than IP addresses) in target definitions.

• Configure an appropriate number of forks for
each MRTG daemon to minimize the time for

the ‘‘poll targets’’ phase. On our system, 4
forks per daemon works well to keep polling in
the tens of seconds for 10,000 targets. This
might differ for a wide-area network.

• Place RRD files in a file-system of their own,
ideally one associated with separate logical vol-
umes or disks. This gives the system admini-
strator flexibility to change mount options or
other file-system options. It also isolates the
system activity data (e.g., as displayed by sar)
from unrelated activity.

• Consider mounting the file-system that contains
the RRD files with the ‘‘noatime’’ and ‘‘nodira-
time’’ options so that RRD file reads do not
require an update to the file inode block. Of
course the effect of this is that file access times
will be inaccurate, but often these are not of
interest for ‘‘.rrd’’ files.

• Consider enabling dir_index on ext file-systems
to speed up lookups in large directories. MRTG
places all RRD files in the same directory, and
we’ve scaled to hundreds of thousands.

78 21st Large Installation System Administration Conference (LISA ’07)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

